A Novel Light U-Net Model for Left Ventricle Segmentation Using MRI

Author:

Irshad Mehreen1,Yasmin Mussarat1,Sharif Muhammad Imran1ORCID,Rashid Muhammad2ORCID,Sharif Muhammad Irfan3,Kadry Seifedine4567ORCID

Affiliation:

1. Department of Computer Science, COMSATS University Islamabad, Wah Campus, Wah Cantt 47010, Pakistan

2. Department of Computer Science, University of Turin, 10124 Turin, Italy

3. Department of Information Sciences, University of Education Lahore, Jauharabad Campus, Jauharabad 41200, Pakistan

4. Department of Applied Data Science, Noroff University College, 4612 Kristiansand, Norway

5. Artificial Intelligence Research Center (AIRC), Ajman University, Ajman P.O. Box 346, United Arab Emirates

6. Department of Electrical and Computer Engineering, Lebanese American University, Byblos 13-5053, Lebanon

7. MEU Research Unit, Middle East University, Amman 11831, Jordan

Abstract

MRI segmentation and analysis are significant tasks in clinical cardiac computations. A cardiovascular MR scan with left ventricular segmentation seems necessary to diagnose and further treat the disease. The proposed method for left ventricle segmentation works as a combination of the intelligent histogram-based image enhancement technique with a Light U-Net model. This technique serves as the basis for choosing the low-contrast image subjected to the stretching technique and produces sharp object contours with good contrast settings for the segmentation process. After enhancement, the images are subjected to the encoder–decoder configuration of U-Net using a novel lightweight processing model. Encoder sampling is supported by a block of three parallel convolutional layers with supporting functions that improve the semantics for segmentation at various levels of resolutions and features. The proposed method finally increased segmentation efficiency, extracting the most relevant image resources from depth-to-depth convolutions, filtering them through each network block, and producing more precise resource maps. The dataset of MICCAI 2009 served as an assessment tool of the proposed methodology and provides a dice coefficient value of 97.7%, accuracy of 92%, and precision of 98.17%.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3