A Study on Graph Centrality Measures of Different Diseases Due to DNA Sequencing

Author:

Muhiuddin Ghulam1ORCID,Samanta Sovan2ORCID,Aljohani Abdulrahman F.13ORCID,Alkhaibari Abeer M.4ORCID

Affiliation:

1. Department of Mathematics, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia

2. Department of Mathematics, Tamralipta Mahavidyalaya, West Bengal 721636, India

3. Department of Mathematical Sciences, George Mason University, Fairfax, VA 22030, USA

4. Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia

Abstract

Rare genetic diseases are often caused by single-gene defects that affect various biological processes across different scales. However, it is challenging to identify the causal genes and understand the molecular mechanisms of these diseases. In this paper, we present a multiplex network approach to study the relationship between human diseases and genes. We construct a human disease network (HDN) and a human genome network (HGN) based on genotype–phenotype associations and gene interactions, respectively. We analyze 3771 rare diseases and find distinct phenotypic modules within each dimension that reflect the functional effects of gene mutations. These modules can also be used to predict novel gene candidates for unsolved rare diseases and to explore the cross-scale impact of gene perturbations. We compute various centrality measures for both networks and compare them. Our main finding is that diseases are weakly connected in the HDN, while genes are strongly connected in the HGN. This implies that diseases are relatively isolated from each other, while genes are involved in multiple biological processes. This result has implications for understanding the transmission of infectious diseases and the development of therapeutic interventions. We also show that not all diseases have the same potential to spread infections to other parts of the body, depending on their centrality in the HDN. Our results show that the phenotypic module formalism can capture the complexity of rare diseases beyond simple physical interaction networks and can be applied to study diseases arising from DNA (Deoxyribonucleic Acid) sequencing errors. This study provides a novel network-based framework for integrating multi-scale data and advancing the understanding and diagnosis of rare genetic diseases.

Funder

Deanship of Scientific Research at University of Tabuk

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3