(ω,ρ)-BVP Solutions of Impulsive Differential Equations of Fractional Order on Banach Spaces

Author:

Fečkan Michal12ORCID,Kostić Marko3ORCID,Velinov Daniel4ORCID

Affiliation:

1. Department of Mathematical Analysis and Numerical Mathematics, Faculty of Mathematics, Physics and Informatics, Comenius University in Bratislava, 842 48 Bratislava, Slovakia

2. Mathematical Institute of Slovak Academy of Sciences, Štefánikova 49, 814 73 Bratislava, Slovakia

3. Faculty of Technical Sciences, University of Novi Sad, Trg D. Obradovića 6, 21125 Novi Sad, Serbia

4. Department for Mathematics and Informatics, Faculty of Civil Engineering, Ss. Cyril and Methodius University in Skopje, Partizanski Odredi 24, P.O. Box 560, 1000 Skopje, North Macedonia

Abstract

The paper focuses on exploring the existence and uniqueness of a specific solution to a class of Caputo impulsive fractional differential equations with boundary value conditions on Banach space, referred to as (ω,ρ)-BVP solution. The proof of the main results of this study involves the application of the Banach contraction mapping principle and Schaefer’s fixed point theorem. Furthermore, we provide the necessary conditions for the convexity of the set of solutions of the analyzed impulsive fractional differential boundary value problem. To enhance the comprehension and practical application of our findings, we conclude the paper by presenting two illustrative examples that demonstrate the applicability of the obtained results.

Funder

Ministry of Science and Technological Development, Republic of Serbia, Bilateral project between MANU and SANU

Slovak Grant Agency

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference28 articles.

1. Lakshmikantham, V., Bainov, D.D., and Simeonov, P.S. (1989). Theory of Impulsive Differential Equations, World Scientific Publishing Co., Pte. Ltd.

2. Existence of optimal contorls for a general class of impulsive systems on Banach space;Ahmed;SIAM J. Control Optim.,2003

3. Bainov, D., and Simeonov, P. (1993). Impulsive Differential Equations: Periodic Solutions and Applications, Wiley.

4. Bainov, D., and Simeonov, P. (1998). Oscillation Theory of Impulsive Differential Equations, International Publications.

5. Halanay, A., and Wexler, D. (1971). Qualitative Theory of Impulse Systems, Mir. (In Russian).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3