Research on Financial Default Model with Stochastic Intensity Using Filtered Likelihood Method

Author:

Liu Xiangdong1ORCID,Wu Jiahui1,Li Xianglong1

Affiliation:

1. School of Economics, Jinan University, Guangzhou 510632, China

Abstract

This paper investigates the financial default model with stochastic intensity by incomplete data. On the strength of the process-designated point process, the likelihood function of the model in the parameter estimation can be decomposed into the factor likelihood term and event likelihood term. The event likelihood term can be successfully estimated by the filtered likelihood method, and the factor likelihood term can be calculated in a standardized manner. The empirical study reveals that, under the filtered likelihood method, the first model outperforms the other in terms of parameter estimation efficiency, convergence speed, and estimation accuracy, and has a better prediction effect on the default data in China’s financial market, which can also be extended to other countries, which is of great significance in the default risk control of financial institutions.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central University

Innovation Team Project in Guangdong Province

Industry -University- Research Innovation Fund of Science and Technology Development Center of Ministry of Education

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference27 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3