Improving Newton–Schulz Method for Approximating Matrix Generalized Inverse by Using Schemes with Memory

Author:

Cordero Alicia1ORCID,Maimó Javier G.2ORCID,Torregrosa Juan R.1ORCID,Vassileva María P.2ORCID

Affiliation:

1. Institute for Multidisciplinary Mathematics, Universitat Politècnica de València, 46022 Valencia, Spain

2. Área de Ciencias Básicas y Ambientales, Instituto Tecnológico de Santo Domingo (INTEC), Av. Los Procéres, Gala, Santo Domingo 10602, Dominican Republic

Abstract

Some iterative schemes with memory were designed for approximating the inverse of a nonsingular square complex matrix and the Moore–Penrose inverse of a singular square matrix or an arbitrary m×n complex matrix. A Kurchatov-type scheme and Steffensen’s method with memory were developed for estimating these types of inverses, improving, in the second case, the order of convergence of the Newton–Schulz scheme. The convergence and its order were studied in the four cases, and their stability was checked as discrete dynamical systems. With large matrices, some numerical examples are presented to confirm the theoretical results and to compare the results obtained with the proposed methods with those provided by other known ones.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3