COVID-19: From Limit Cycle to Stable Focus

Author:

Sokolov Alexander12ORCID,Voloshinov Vladimir1

Affiliation:

1. Institute for Information Transmission Problems of RAS (Kharkevich Institute), Bolshoy Karetny per. 19, Build. 1, Moscow 127051, Russia

2. Vernadsky Institute of Geochemistry and Analytical Chemistry of RAS, Kosygin Street 19, Moscow 119991, Russia

Abstract

The study aims at investigating a new fundamental property of infectious diseases with natural adaptive immunity that weakens over time—qualitative change (bifurcation) in the behavior of the “virus vs. human” system with an increase in contagiousness. Numerical experiments with a model of the COVID-19 epidemic in Moscow have demonstrated that when the reproduction number R0 is about 4, a qualitative change (bifurcation) occurs in the behavior of the virus–human system. Below this value, the long-term forecast tends toward undamped oscillations; above it, the forecast shows damped oscillations: the amplitudes of epidemic waves decrease gradually, with a constant, very high background level of morbidity that keeps natural immunity near 100%. To confirm this result analytically, we use an original modification of the Euler–Lotka renewal equation, which describes the dynamics of infected patients distributed by disease duration (time since infection) and accounts for immunity. To construct a bifurcation diagram, which illustrates the dependence of the equilibrium stability on the parameter R0, we linearize the equation in the vicinity of the equilibrium point and examine its numerical approximation (discrete form). This approximation can be interpreted as a Leslie model, with the matrix elements dependent on the parameter R0. By examining the roots of the corresponding Lotka polynomial, we can assess the stability of the equilibrium point and verify the basic assumption about the change in the properties of the system with increasing R0—about the transition from undamped oscillations to damped ones. For the bifurcation diagram, we use the functions obtained from the simulation of the COVID-19 epidemic in Moscow. However, observations of the epidemic in other cities and countries support the primary finding of our study regarding the attenuation of epidemic waves.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3