Hydrological Modelling in Data Sparse Environment: Inverse Modelling of a Historical Flood Event

Author:

Bárdossy AndrásORCID,Anwar FaizanORCID,Seidel JochenORCID

Abstract

We dealt with a rather frequent and difficult situation while modelling extreme floods, namely, model output uncertainty in data sparse regions. A historical extreme flood event was chosen to illustrate the challenges involved. Our aim was to understand what the causes might have been and specifically to show how input and model parameter uncertainties affect the output. For this purpose, a conceptual model was calibrated and validated with recent data rich time period. Resulting model parameters were used to model the historical event which subsequently resulted in a rather poor hydrograph. Due to the bad model performance, a spatial simulation technique was used to invert the model for precipitation. Constraints, such as taking the precipitation values at historical observation locations in to account, with correct spatial structures and following the observed regional distributions were used to generate realistic precipitation fields. Results showed that the inverted precipitation improved the performance significantly even when using many different model parameters. We conclude that while modelling in data sparse conditions both model input and parameter uncertainties have to be dealt with simultaneously to obtain meaningful results.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3