Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique to treat brain disorders by using a constant, low current to stimulate targeted cortex regions. Compared to the conventional tDCS that uses two large pad electrodes, multiple electrode tDCS has recently received more attention. It is able to achieve better stimulation performance in terms of stimulation intensity and focality. In this paper, we first establish a computational model of tDCS, and then propose a novel optimization algorithm using a regularization matrix λ to explore the balance between stimulation intensity and focality. The simulation study is designed such that the performance of state-of-the-art algorithms and the proposed algorithm can be compared via quantitative evaluation. The results show that the proposed algorithm not only achieves desired intensity, but also smaller target error and better focality. Robustness analysis indicates that the results are stable within the ranges of scalp and cerebrospinal fluid (CSF) conductivities, while the skull conductivity is most sensitive and should be carefully considered in real clinical applications.
Subject
Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献