Tribological Properties of Polyimide Composites Modified with Diamondoid Metal–Organic Frameworks

Author:

Yu Zihui12ORCID,Pei Xianqiang123ORCID,Pei Qianyao12,Wang Yan1,Zhang Zhancheng1,Zhang Yaoming1,Wang Qihua1,Wang Tingmei1

Affiliation:

1. State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 73000, China

2. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

3. Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 264000, China

Abstract

In this work, diamondoid metal-organic frameworks (MOFs) were efficiently prepared by sonochemical synthesis and grown on polyimide (PI), aiming to improve the anti-wear performance of the PI matrix. By introducing MOFs into the PI matrix, the free movement of PI molecular chains were restricted, and its hardness and elastic modulus were improved. It was found that the wear rate of the 3 wt.% MOFs/PI composites was reduced by 72.6% compared to pure PI at a load of 4 N after tribological testing by using a ball-on-disk tribometer. This can be attributed to the excellent load-bearing and shear resistance of the fourfold-interpenetrated diamondoid networks, in which the transition metal elements can favor the formation of transfer films. It is worth noting that the 3 wt.% MOFs/PI composites still exhibited great tribological properties under high loads or high speeds. The findings of the present study indicate that diamondoid metal-organic frameworks can be used as efficient modifiers to enhance the tribological properties of PI.

Funder

Strategic Priority Research Program of the Chinese Academy of Sciences

Major Program of the Lanzhou Institute of Chemical Physics

Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3