Copper-Containing Bionanocomposites Based on Natural Raw Arabinogalactan as Effective Vegetation Stimulators and Agents against Phytopathogens

Author:

Khutsishvili Spartak S.1ORCID,Perfileva Alla I.2ORCID,Kon’kova Tatyana V.3,Lobanova Natalya A.4ORCID,Sadykov Evgeniy K.5,Sukhov Boris G.3ORCID

Affiliation:

1. Rafael Agladze Institute of Inorganic Chemistry and Electrochemistry, Ivane Javakhishvili Tbilisi State University, 11 Mindeli St., 0186 Tbilisi, Georgia

2. Laboratory of Plant-Microbe Interactions, Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia

3. Laboratory of Nanoparticles, V. V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia

4. Laboratory of Unsaturated Heteroatomic Compounds, A. E. Favorky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia

5. Laboratory of Metal-Organic Coordination Polymers, A. V. Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia

Abstract

Novel copper-containing bionanocomposites based on the natural raw arabinogalactan have been obtained as universal effective agents against phytopathogen Clavibacter sepedonicus and development stimulants of agricultural plants. Thus, the use of such nanosystems offers a solution to the tasks set in biotechnology while maintaining high environmental standards using non-toxic, biocompatible, and biodegradable natural biopolymers. The physicochemical characteristics of nanocomposites were determined using a number of analytical methods (elemental analysis, transmission electron microscopy and spectroscopic parameters of electron paramagnetic resonance, UV–visible, etc.). The results of the study under the influence of the nanocomposites on the germination of soybean seeds (Glycine max L.) and the vegetation of potatoes (Solanum tuberosum L.) showed the best results in terms of biometric indicators. It is especially worth noting the pronounced influence of the nanocomposite on the development of the root system, and the increase in the mass of the potato root system reached 19%. It is also worth noting that the nanocomposites showed a stimulating effect on the antioxidant system and did not have a negative effect on the content of pigments in potato tissues. Moreover, the resulting bionanocomposite showed a pronounced antibacterial effect against the phytopathogenic bacterium. During the co-incubation of phytopathogen Clavibacter sepedonicus in the presence of the nanocomposite, the number of cells in the bacterial suspension decreased by up to 40% compared to that in the control, and a 10% decrease in the dehydrogenase activity of cells was also detected.

Funder

RCSI

Ministry of Science and Higher Education of the Russian Federatio

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3