FDM 3D Printing and Properties of PBAT/PLA Blends

Author:

Yu Wangwang12ORCID,Li Mengya3,Lei Wen3,Chen Yong3

Affiliation:

1. School of Mechanical Engineering, Nanjing Vocational University of Industry Technology, Nanjing 210023, China

2. Jiangsu Province Precision Manufacturing Engineering and Technology Research Center, Nanjing 210023, China

3. College of Science, Nanjing Forestry University, Nanjing 210037, China

Abstract

Biodegradable polylactic acid (PLA) has been widely used in fused deposition modeling (FDM) 3D printing. In order to improve its comprehensive properties in 3D printing, in this study, 0-40% content of polybutylene adipate terephthalate(PBAT) was selected to be blended with PLA in a twin-screw extruder; the resulting pellets were drawn into a homogeneous filament; then, PBAT/PLA samples were prepared by FDM 3D printing, and the effects of the dosage of PBAT on the mechanical properties, thermal behavior, surface wettability and melt flowability of the samples were investigated. The results showed that all the samples could be printed smoothly, and the ductility was slightly improved by the increase in the PBAT dosage; the thermal stability of PLA was enhanced by blending with PBAT, and the crystallinity increased monotonically with the increase in PBAT. After blending with PBAT, the surfaces of the samples were more hydrophilic and flowable. The important conclusion achieved in this work was that the PBAT/PLA blends, especially those containing 30%PBAT, showed great potential to replace petroleum-based plastics and are suitable for use in FDM 3D printing technologies for different applications.

Funder

Foundation of the Jiangsu Province Precision Manufacturing Engineering and Technology Research Center

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3