Long-Chain Bio-Based Nylon 514 Salt: Crystal Structure, Phase Transformation, and Polymerization

Author:

Li Zihan1,Zhang Lei2,Zhang Xiaohan1,Chen Tianpeng1,Yang Pengpeng1,Chen Yong1,Lin Huajie3,Zhuang Wei1,Wu Jinglan1,Ying Hanjie1

Affiliation:

1. National Engineering Technique Research Center for Biotechnology, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China

2. Nanjing Biotogether Co., Ltd., No. 8, Shuangfeng Road, Nanjing 211806, China

3. SINOPEC Ningbo Research Institute of New Materials, No. 88, Mianfeng Road, Ningbo 315200, China

Abstract

Nylon 514 is one of the new long-chain bio-based nylon materials; its raw material, 1,5-pentanediamine (PDA), is prepared by biological techniques, using biomass as the raw material. The high-performance monomer of nylon 514, 1,5-pentanediamine-tetradecanedioate (PDA-TDA) salt, was obtained through efficient crystallization methods. Here, two crystal forms of PDA-TDA, anhydrous and dihydrate, were identified and studied in this paper. From the characterization data, their crystal structures and thermal behaviors were investigated. Lattice energy was calculated to gain further insight into the relationship between thermal stability and crystal structures. The contribution of hydrogen bonds and other intermolecular interactions to the crystal structure stability have been quantified according to detailed Hirshfeld and IRI analyses. Additionally, the transformation mechanism of the anhydrate and dihydrate was established through a series of well-designed stability experiments, in which the temperature and water activity play a significant role in the structural stability of crystalline forms. Eventually, we obtained nylon 514 products with good thermal stability and low absorption using stable dihydrate powders as monomers. The properties of nylon 514 products prepared by different polymerization methods were also compared.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3