Modeling Xanthan Gum Foam’s Material Properties Using Machine Learning Methods

Author:

Ergün Halime1ORCID,Ergün Mehmet Emin2

Affiliation:

1. Seydisehir Ahmet Cengiz Faculty of Engineering, Necmettin Erbakan University, Konya 42360, Turkey

2. Akseki Vocational School, Alanya Alaaddin Keykubat University, Antalya 07630, Turkey

Abstract

Xanthan gum is commonly used in the pharmaceutical, cosmetic, and food industries. However, there have been no studies on utilizing this natural biopolymer as a foam material in the insulation and packaging sectors, which are large markets, or modeling it using an artificial neural network. In this study, foam material production was carried out in an oven using different ratios of cellulose fiber and xanthan gum in a 5% citric acid medium. As a result of the physical and mechanical experiments conducted, it was determined that xanthan gum had a greater impact on the properties of the foam material than cellulose. The densities of the produced foam materials ranged from 49.42 kg/m3 to 172.2 kg/m3. In addition, the compressive and flexural moduli were found to vary between 235.25 KPa and 1257.52 KPa and between 1939.76 KPa and 12,736.39 KPa, respectively. Five machine-learning-based methods (multiple linear regression, support vector machines, artificial neural networks, least squares methods, and generalized regression neural networks) were utilized to analyze the effects of the components used in the foam formulation. These models yielded accurate results without time, material, or cost losses, making the process more efficient. The models predicted the best results for density, compression modulus, and flexural modulus achieved in the experimental tests. The generalized regression neural network model yielded impressive results, with R2 values above 0.97, enabling the acquisition of more quantitative data with fewer experimental results.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3