Affiliation:
1. Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou 412007, China
2. Fujian Provincial Key Laboratory of Functional Materials and Applications, Xiamen University of Technology, Xiamen 361024, China
Abstract
In order to solve the problems of insufficient active functions (antibacterial and antioxidant activities) and the poor degradability of traditional plastic packaging materials, biodegradable chitosan (CS)/polyvinyl alcohol (PVA) nanocomposite active films reinforced with natural plant polyphenol-quercetin functionalized layered clay nanosheets (QUE-LDHs) were prepared by a solution casting method. In this study, QUE-LDHs realizes a combination of the active functions of QUE and the enhancement effect of LDHs nanosheets through the deposition and complexation of QUE and copper ions on the LDHs. Infrared and thermal analysis results revealed that there was a strong interface interaction between QUE-LDHs and CS/PVA matrix, resulting in the limited movement of PVA molecules and the increase in glass transition temperature and melting temperature. With the addition of QUE-LDHs, the active films showed excellent UV barrier, antibacterial, antioxidant properties and tensile strength, and still had certain transparency in the range of visible light. As QUE-LDHs content was 3 wt%, the active films exhibited a maximum tensile strength of 58.9 MPa, representing a significant increase of 40.9% compared with CS/PVA matrix. Notably, the UV barrier (280 nm), antibacterial (E. coli) and antioxidant activities (DPPH method) of the active films achieved 100.0%, 95.5% and 58.9%, respectively. Therefore, CS/PVA matrix reinforced with QUE-LDHs has good potential to act as an environmentally and friendly active packaging film or coating.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Fujian province, China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献