Influence of Thiol-Functionalized Polysilsesquioxane/Phosphorus Flame-Retardant Blends on the Flammability and Thermal, Mechanical, and Volatile Organic Compound (VOC) Emission Properties of Epoxy Resins

Author:

Kim Young-Hun12,Baek Jeong Ju1,Chang Ki Cheol1,Lim Ho Sun3ORCID,Choi Myung-Seok4,Koh Won-Gun2,Shin Gyojic1

Affiliation:

1. Green Circulation R&D Department, Research Institute of Sustainable Development Technology, Korea Institute of Industrials Technology (KITECH), Yangdaegiro-gil 89, Ipjang-myeon, Cheonan-si 31056, Republic of Korea

2. Department of Chemical and Biomolecular Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, Republic of Korea

3. Department of Chemical and Biological Engineering, Institute of Advanced Materials and System, Sookmyung Women’s University, Seoul 04310, Republic of Korea

4. Division of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea

Abstract

In this study, thiol-functionalized ladder-like polysesquioxanes end-capped with methyl and phenyl groups were synthesized via a simple sol-gel method and characterized through gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and thermogravimetric analysis (TGA). Additionally, epoxy blends of different formulations were prepared. Their structural, flame-retardant, thermal, and mechanical properties, as well as volatile organic compound (VOC) emissions, were determined using differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), TGA, scanning electron microscopy (SEM), limiting oxygen index (LOI), cone calorimetry, and a VOC analyzer. Compared to epoxy blends with flame retardants containing elemental phosphorus alone, those with flame retardants containing elemental phosphorus combined with silicon and sulfur exhibited superior thermal, flame-retardant, and mechanical properties with low VOC emissions. SEM of the residual char revealed a dense and continuous morphology without holes or cracks. In particular, LOI values for the combustion of methyl and phenyl end-capped polysilsesquioxane mixtures were 32.3 and 33.7, respectively, compared to 28.4% of the LOI value for the blends containing only phosphorus compounds. The silicon–sulfur–phosphorus-containing blends displayed reduced flammability concerning the blends using a flame retardant containing only phosphorus. This reflects the cooperative effects of various flame-retardant moieties.

Funder

Ministry of Trade, Industry & Energy

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3