A Systematic Investigation on the Effect of Carbon Nanotubes and Carbon Black on the Mechanical and Flame Retardancy of Polyolefin Blends

Author:

Alosime Eid M.1ORCID,Basfar Ahmed A.23ORCID

Affiliation:

1. King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia

2. M.Sc. in Nuclear Engineering Program, College of Engineering, King Saud University, Riyadh P.O. Box 145111, Saudi Arabia

3. Mechanical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia

Abstract

Due to high filler loading, clean, commercial, thermoplastic, flame-retardant materials are mechanically unstable when insulating wires and cables. In this study, composite formulations of linear low-density polyethylene (LLDPE)/ethylene–vinyl acetate (EVA) containing a flame retardant, such as magnesium hydroxide (MH; formula: Mg(OH)2) and huntite hydromagnesite (HH; formula: Mg3Ca(CO3)4, Mg5(CO3)4(OH)2·3H2O), were prepared. The influence of carbon nanotubes (CNTs) and carbon black (CB) on the mechanical properties and flame retardancy of LLDPE/EVA was studied. Three types of CNTs were examined for their compatibility with other materials in clean thermoplastic flame-retardant compositions. The CNTs had the following diameters: 10–15 nm, 40–60 nm, and 60–80 nm. Optimum mechanical flame retardancy and electrical properties were achieved by adding CNTs with an outer diameter of 40–60 nm and a length of fewer than 20 nm. Large-sized CNTs result in poor mechanical characteristics, while smaller-sized CNTs improve the mechanical properties of the composites. CB enhances flame retardancy but deteriorates mechanical properties, particularly elongation at break, in clean, black, thermoplastic, flame-retardant compositions. Obtaining satisfactory compositions that meet both properties, especially formulations passing the V-0 of the UL 94 test with a minimum tensile strength of 9.5 MPa and an elongation at break of 125%, is challenging. When LLDPE was partially substituted with EVA, the limiting oxygen index (LOI) increased. The amount of filler in the formulations determined how it affected flammability. This study also included a reliable method for producing clean, black, thermoplastic, flame-retardant insulating material for wire and cable without sacrificing mechanical properties.

Funder

Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3