Affiliation:
1. College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China
2. College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
Abstract
With increasing attention being paid to environmental issues, the application of natural fibers in fiber-reinforced composites has attracted more and more attention. Composite materials with basalt fibers (BFs) as reinforcement have excellent properties and are widely used in many fields. Hydrothermal aging crucially influences the durability of basalt fiber/epoxy resin composites (BF/ERCs). In this study, BFs were used as reinforcing materials, whose surfaces were modified with a rare earth modification solution (CeCl3). The density, mechanical performance, and chemical properties of BF/ERCs subjected to hygrothermal aging were analyzed by the weight method, static mechanical performance testing, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FT-IR). The effects of the modification solution with different Ce concentrations on the water absorption, tensile, bending and interlaminar shear strength (ILSS) of BF/ERCs were investigated. The test results showed that the water absorption of BF/ERCs treated with a modification solution that contained Ce 0.5 wt % as the minimum value and the retention rate of the mechanical properties of BF/ERCs reached maximum values after hygrothermal aging.
Funder
14th five-year key technology project of China National Offshore Oil Corporation
High Level Research Guidance Project of Harbin Engineering University
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献