Affiliation:
1. Advanced Research Laboratory for Multifunctional Lightweight Structures (ARL-MLS), Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
Abstract
This study investigates the interaction between static and fatigue strength and the rheological properties of acrylonitrile–butadiene–styrene (ABS) polymer reinforced with graphene nanoplatelets (GNPs) in both filament and 3D-printed forms. Specifically focusing on the effects of 1.0 wt.% GNPs, the study examines their influence on static/fatigue responses. The rheological behaviour of pure ABS polymer and ABS/GNPs nanocomposite samples, fabricated through material extrusion, is evaluated. The results indicated that the addition of 1.0 wt.% GNPs to the ABS matrix improved the elastic modulus of the nanocomposite filaments by up to about 34%, while reducing their ductility by approximately 60%. Observations revealed that the static and fatigue responses of the composite filament materials and 3D-printed parts were not solely attributed to differences in mechanical properties, but were also influenced by extrusion-related process parameters. The shark-skin effect, directly related to the material’s rheological properties, had a major impact on static strength and fatigue life. The proposed method involved adjusting the temperature of the heating zones of the extruder during filament production to enhance the static response of the filament and using a higher nozzle temperature (270 °C) to improve the fatigue life of the 3D-printed samples. The findings reveal that the proposed parameter optimisation led to filaments with minimised shark-skin effects, resulting in an improvement in ultimate tensile strength compared to pure ABS. Moreover, the 3D-printed samples produced with a higher nozzle temperature exhibited increased fatigue lives compared to those manufactured under identical conditions as pure ABS.
Funder
Natural Sciences and Engineering Research Council of Canada