Dielectric Elastomer Actuators with Enhanced Durability by Introducing a Reservoir Layer

Author:

Jung Sumin1,Kang Minchae1ORCID,Han Min-Woo1

Affiliation:

1. Advanced Manufacturing & Soft Robotics Laboratory, Department of Mechanical Engineering, Dongguk University, 30 Pildong-ro 1, Jung-gu, Seoul 04620, Republic of Korea

Abstract

A Dielectric Elastomer Actuator (DEA) consists of electrodes with a dielectric layer between them. By controlling the design of the electrodes, voltage, and frequency, the operating range and speed of the DEA can be adjusted. These DEAs find applications in biomimetic robots, artificial muscles, and similar fields. When voltage is applied to the DEA, the dielectric layer undergoes compression and expansion due to electrostatic forces, which can lead to electrical breakdown. This phenomenon is closely related to the performance and lifespan of the DEA. To enhance stability and improve dielectric properties, a DEA Reservoir layer is introduced. Here, stability refers to the ability of the DEA to perform its functions even as the applied voltage increases. The Reservoir layer delays electrical breakdown and enhances stability due to its enhanced thickness. The proposed DEA in this paper is composed of a Reservoir layer and electrode layer. The Reservoir layer is placed between the electrode layers and is independently configured, not subjected to applied voltage like the electrode layers. The performance of the DEA was evaluated by varying the number of polymer layers in the Reservoir and electrode designs. Introducing the Reservoir layer improved the dielectric properties of the DEA and delayed electrical breakdown. Increasing the dielectric constant through the DEA Reservoir can enhance output characteristics in response to electrical signals. This approach can be utilized in various applications in wearable devices, artificial muscles, and other fields.

Funder

Korean government

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3