The Structural, Thermal and Morphological Characterization of Polylactic Acid/Β-Tricalcium Phosphate (PLA/Β-TCP) Composites upon Immersion in SBF: A Comprehensive Analysis

Author:

Ftiti Sondes1ORCID,Cifuentes Sandra C.2ORCID,Guidara Awatef1ORCID,Rams Joaquín2ORCID,Tounsi Hassib1ORCID,Fernández-Blázquez Juan P.3ORCID

Affiliation:

1. Laboratory of Advanced Materials (LR01ES26), National Engineering School of Sfax, University of Sfax, Sfax 3038, Tunisia

2. Department of Applied Mathematics, Materials Science and Engineering and Electronic Technology, Universidad Rey Juan Carlos (URJC), 28933 Móstoles, Spain

3. IMDEA Materials Institute, C/Eric Kandel 2, 28906 Getafe, Spain

Abstract

Biocomposite films based on PLA reinforced with different β-TCP contents (10%, 20%, and 25%wt.) were fabricated via solvent casting and immersed in SBF for 7, 14, and 21 days. The bioactivity, morphological, and thermal behavior of composites with immersion were studied using scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) microanalysis, weight loss (WL), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and gel permeation chromatography (GPC). This broad analysis leads to a deeper understanding of the evolution of the polymer–filler interaction with the degradation of the biocomposites. The results showed that β-TCP gradually evolved into carbonated hydroxyapatite as the immersion time increased. This evolution affected the interaction of β-TCP with PLA. PLA and β-TCP interactions differed from PLA and carbonated hydroxyapatite interactions. It was observed that β-TCP inhibited PLA hydrolysis but accelerated the thermal degradation of the polymer. β-TCP retarded the cold crystallization of PLA and hindered its crystallinity. However, after immersion in SBF, particles accelerated the cold crystallization of PLA. Therefore, considering the evolution of β-TCP with immersion in SBF is crucial for an accurate analysis of the biocomposites’ degradation. These findings enhance the comprehension of the degradation mechanism in PLA/β-TCP, which is valuable for predicting the degradation performance of PLA/β-TCP in medical applications.

Funder

Ministry of Higher Education and Scientific Research of Tunisia

Sondes Ftiti at the Universidad Rey Juan Carlos in Spain possible

Ministry of Science and Innovation of Spain

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3