Integrated Heat Recovery System Based on Mixed Ionic–Electronic Conducting Membrane for Improved Solid Oxide Co-Electrolyzer Performance

Author:

Sánchez-Luján José1ORCID,Molina-García Ángel2ORCID,López-Cascales José Javier1ORCID

Affiliation:

1. Department of Chemical and Environmental Engineering, Universidad Politécnica de Cartagena, 30203 Cartagena, Spain

2. Department of Automatics, Electrical Engineering and Electronic Technology, Universidad Politécnica de Cartagena, 30202 Cartagena, Spain

Abstract

The current state of mixed ionic–electronic conducting ceramic membrane technology presents significant advancements with potential applications in various fields including solid oxide electrolyzers, fuel cells, hydrogen production, CO2 reduction, and membrane reactors for chemical production and oxygen separation. Particularly in oxygen separation applications, optimal conditions closely align with the conditions of oxygen-rich air streams emitted from the anode of solid oxide co-electrolyzers. This paper describes and analyzes a novel integrated heat recovery system based on mixed ionic–electronic conducting membranes. The system operates in two stages: firstly, oxygen is separated from the anode output stream using mixed ionic–electronic conducting membranes aided by a vacuum system, followed by the heat recovery process. Upon oxygen separation, the swept gas stream is recirculated at temperatures near thermoneutral conditions, resulting in performance improvements at both cell and system levels. Additionally, an oxygen stream is generated for various applications. An Aspen HYSYS® model has been developed to calculate heat and material balances, demonstrating the efficiency enhancements of the proposed system configuration.

Funder

Ministerio de Ciencia e Innovación

Publisher

MDPI AG

Reference62 articles.

1. European Commission (2024, February 06). The European Green Deal. Available online: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en.

2. European Commission (2024, February 06). A Hydrogen Strategy for a Climate-Neutral Europe. Available online: https://ec.europa.eu/energy/sites/ener/files/hydrogen_strategy.pdf.

3. Advancing the energy policy and the use of renewable energy sources in the European Union;Kaldellis;Renew. Sustain. Energy Rev.,2014

4. International Energy Agency (2024, February 06). Net Zero by 2050: A Roadmap for the Global Energy Sector. Available online: https://www.iea.org/reports/net-zero-by-2050.

5. Aicart, J. (2014). Modeling and Experimental Validation of High Temperature Steam and Carbon Dioxide Co-Electrolysis. [Ph.D. Thesis, Université de Grenoble]. (In English).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hydrogen generation electrolyzers: Paving the way for sustainable energy;International Journal of Hydrogen Energy;2024-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3