Novel Conductive AgNP-Based Adhesive Based on Novel Poly (Ionic Liquid)-Based Waterborne Polyurethane Chloride Salts for E-Textiles

Author:

Liao Haiyang12ORCID,Xiao Yeqi1,Xiao Tiemin1,Kuang Hongjin1,Feng Xiaolong1,Sun Xiao1,Cui Guixin2,Duan Xiaofei1,Shi Pu1

Affiliation:

1. School of Mechanical Engineering, Hunan University of Technology, Zhuzhou 412007, China

2. China Textile Academy (Zhejiang) Technology Research Institute Co., Ltd., Shaoxing 312071, China

Abstract

The emergence of novel e-textile materials that combine the inherent qualities of the textile substrate (lightweight, soft, breathable, durable, etc.) with the functionality of micro/nano-electronic materials (conductive, dielectric, sensing, etc.) has resulted in a trend toward miniaturization, integration, and intelligence in new electronic devices. However, the formation of a conductive network by micro/nano-conductive materials on textiles necessitates high-temperature sintering, which inevitably causes substrate aging and component damage. Herein, a bis-hydroxy-imidazolium chloride salt as a hard segment to synthesize a waterborne polyurethane (WPU) adhesive is designed and prepared. When used in nano-silver-based printing coatings, it offers strong adherence for coatings, reaching 16 N cm−1; on the other hand, the introduction of chloride ions enables low-temperature (60 °C) chemical sintering to address the challenge of secondary treatment and high-temperature sintering (>150 °C). Printed into flexible circuits, the resistivity can be controlled by the content of imidazolium salts anchored in the molecular chain of the WPU from a maximum resistivity of 3.1 × 107 down to 5.8 × 10−5 Ω m, and it can conduct a Bluetooth-type finger pulse detector with such low resistivity. As a flexible circuit, it also offers high stability against washing and adhesion, which the resistivity only reduces less than 20% after washing 10 times and adhesion. Owing to the adjustability of the resistivity, we fabricated an all-textile flexible pressure sensor that accurately differentiates different external pressures (min. 10 g, ~29 Pa), recognizes forms, and detects joint motions (finger bending and wrist flexion).

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3