Construction Strategy for Flexible and Breathable SiO2/Al/NFs/PET Composite Fabrics with Dual Shielding against Microwave and Infrared–Thermal Radiations for Wearable Protective Clothing

Author:

Ye Hui12,Liu Qiongzhen12ORCID,Xu Xiao12,Song Mengya12,Lu Ying12,Yang Liyan12,Wang Wen12,Wang Yuedan12,Li Mufang12,Wang Dong12

Affiliation:

1. Key Laboratory of Textile Fiber and Products, Ministry of Education, Wuhan Textile University, Wuhan 430200, China

2. Hubei International Science and Technology Cooperation Base for Intelligent Textile Material Innovation & Application, Wuhan Textile University, Wuhan 430200, China

Abstract

Microwave and infrared–thermal radiation-compatible shielding fabrics represent an important direction in the development of wearable protective fabrics. Nevertheless, effectively and conveniently integrating compatible shielding functions into fabrics while maintaining breathability and moisture permeability remains a significant challenge. Here, we take hydrophilic PVA-co-PE nanofibrous film-coated PET fabric (NFs/PET) as a flexible substrate and deposit a dielectric/conductive (SiO2/Al) bilayer film via magnetron sputtering. This strategy endows the fabric surface with high electrical conductivity, nanoscale roughness comparable to visible and infrared waves, and a dielectric–metal contact interface possessing localized plasmon resonance and Mie scattering effects. The results demonstrate that the optimized SiO2/Al/NFs/PET composite conductive fabric (referred to as S4-1) possesses favorable X-band electromagnetic interference (EMI) shielding effectiveness (50 dB) as well as excellent long-wave infrared (LWIR) shielding or IR stealth performance (IR emissivity of 0.60). Notably, the S4-1 fabric has a cooling effect of about 12.4 °C for a heat source (80 °C) and an insulating effect of about 17.2 °C for a cold source (−20 °C), showing excellent shielding capability for heat conduction and heat radiations. Moreover, the moisture permeability of the S4-1 fabric is about 300 g/(m2·h), which is better than the requirement concerning moisture permeability for wearable fabrics (≥2500–5000 g/(m2·24 h)), indicating excellent heat and moisture comfort. In short, our fabrics have lightweight, thin, moisture-permeable and excellent shielding performance, which provides novel ideas for the development of wearable multi-band shielding fabrics applied to complex electromagnetic environments.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Key Research and Development Project of Hubei Province

Natural Science Foundation of Hubei Province

Educational Commission of Hubei Province of China

Applied Basic Research Project of China National Textile and Apparel Council

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3