Efficient Approach for Direct Robust Surface Grafting of Polyethyleneimine onto a Polyester Surface during Moulding

Author:

Zimmermann Philipp1ORCID,Frohs Silven1,Wiesing Martin2,Meena Kamal1ORCID,Nagel Jürgen1ORCID

Affiliation:

1. Leibniz-Institut für Polymerforschung Dresden e.V., 01069 Dresden, Germany

2. Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung, 28359 Bremen, Germany

Abstract

This paper uses a very effective way for surface modification of thermoplastic polymers during moulding. It is based on a grafting reaction between a thin layer of a functional polymer, deposited on a substrate in advance, and a polymer melt. In this paper, a glycol-modified polyethylene terephthalate (PETG) that was brought in contact with a polyethyleneimine layer during fused filament fabrication is investigated. The focus of this paper is the investigation of the reaction product. Grafting was realised by the formation of stable amide bonds by amidation of ester groups in the main chain of a PETG. XPS investigations revealed that the conversion of amino groups was very high, the distribution was even, and the quantity of amino groups per polyester surface area was still very high. The surface properties of the produced polyester part were mainly characterised by polyethyleneimine. The grafting was able to resist several cycles of extraction in alkaline solutions. The stability was only limited by saponification of the polyester. The degree of surface modification was dependent on the molar mass of polyethyleneimine. This could be rationalised, because grafting only occurred with the one polyethyleneimine molecule that is in close vicinity to the polyester surface when both components come in contact. Fused deposition modelling was chosen as the model process with control over each processing step. However, any other moulding process may be applied, particularly injection moulding for mass production.

Funder

Bundesministerium für Bildung und Forschung

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3