Effect of Liquid Glass-Modified Lignin Waste on the Flammability Properties of Biopolyurethane Foam Composites

Author:

Kairytė Agnė1ORCID,Makowska Sylwia2,Rybiński Przemysław3ORCID,Strzelec Krzysztof2ORCID,Kremensas Arūnas1,Šeputytė-Jucikė Jurga1,Vaitkus Saulius1

Affiliation:

1. Laboratory of Thermal Insulating Materials and Acoustics, Institute of Building Materials, Faculty of Civil Engineering, Vilnius Gediminas Technical University, Linkmenų St. 28, 08217 Vilnius, Lithuania

2. Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 12/16, 90-924 Lodz, Poland

3. Institute of Chemistry, The Jan Kochanowski University, Żeromskiego 5, 25-369 Kielce, Poland

Abstract

Water-blown biopolyurethane (bioPUR) foams are flammable and emit toxic gases during combustion. Herein, a novel approach suggested by the current study is to use different amounts of lignin waste (LigW), which increases the thermal stability and delays the flame spread and sodium silicate (LG), which has foaming ability at high temperatures and acts as a protective layer during a fire. However, there have been no studies carried out to investigate the synergy between these two materials. Therefore, two different ratios, namely 1/1 and 1/2 of LigW/LG, were used to prepare bioPUR foam composites. The obtained bioPUR foam composites with a 1/2 ratio of LigW/LG exhibited inhibition of flame propagation during the ignitability test by 7 s, increased thermal stability at higher temperatures by 40 °C, reduced total smoke production by 17%, reduced carbon monoxide release by 22%, and increased compressive strength by a maximum of 123% and 36% and tensile strength by a maximum of 49% and 30% at 100 °C and 200 °C, respectively, compared to bioPUR foam composites with unmodified LigW. Additionally, thanks to the sufficient compatibility between the polymeric matrix and LigW/LG particles, bioPUR foam composites were characterised by unchanged or even improved physical and mechanical properties, as well as increased glass transition temperature by 16% compared to bioPUR foam composites with unmodified LigW particles, making them suitable for application as a thermal insulating layer in building envelopes.

Funder

Research Council of Lithuania

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3