Features of Changes in the Structure and Properties of a Porous Polymer Material with Antibacterial Activity during Biodegradation in an In Vitro Model

Author:

Yudin Vladimir V.12ORCID,Kulikova Tatyana I.2,Morozov Alexander G.2,Egorikhina Marfa N.1ORCID,Rubtsova Yulia P.1ORCID,Charykova Irina N.1,Linkova Daria D.1ORCID,Zaslavskaya Maya I.1,Farafontova Ekaterina A.1ORCID,Kovylin Roman S.2,Aleinik Diana Ya.1ORCID,Chesnokov Sergey A.12

Affiliation:

1. Privolzhsky Research Medical University of the Ministry of Health of the Russian Federation, 10/1, Ploshchad Minina i Pozharskogo, 603005 Nizhny Novgorod, Russia

2. Laboratory of Photopolymerization and Polymer Materials, G. A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 49, Tropinina, 603950 Nizhny Novgorod, Russia

Abstract

Hybrid porous polymers based on poly-EGDMA and polylactide containing vancomycin, the concentration of which in the polymer varied by two orders of magnitude, were synthesized. The processes of polymer biodegradation and vancomycin release were studied in the following model media: phosphate-buffered saline (PBS), trypsin-Versene solution, and trypsin-PBS solution. The maximum antibiotic release was recorded during the first 3 h of extraction. The duration of antibiotic escape from the polymer samples in trypsin-containing media varied from 3 to 22 days, depending on the antibiotic content of the polymer. Keeping samples of the hybrid polymer in trypsin-containing model media resulted in acidification of the solutions—after 45 days, up to a pH of 1.84 in the trypsin-Versene solution and up to pH 1.65 in the trypsin-PBS solution. Here, the time dependences of the vancomycin release from the polymer into the medium and the decrease in pH of the medium correlated. These data are also consistent with the results of a study of the dynamics of sample weight loss during extraction in the examined model media. However, while the polymer porosity increased from ~53 to ~60% the pore size changed insignificantly, over only 10 μm. The polymer samples were characterized by their antibacterial activity against Staphylococcus aureus, and this activity persisted for up to 21 days during biodegradation of the material, regardless of the medium type used in model. Surface-dependent human cells (dermal fibroblasts) adhere well, spread out, and maintain high viability on samples of the functionalized hybrid polymer, thus demonstrating its biocompatibility in vitro.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3