Study on the Low-Velocity Impact Response and Damage Mechanisms of Thermoplastic Composites

Author:

Han Liu12,Qi Hui1,Yang Jinshui13ORCID,Chu Fuqing1ORCID,Lin Changliang2,Liu Pingan1,Zhang Qian4

Affiliation:

1. College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, China

2. AVIC Harbin Aircraft Industry Croup Co., Ltd., Harbin 150066, China

3. Qingdao Innovation and Development Base, Harbin Engineering University, Qingdao 266000, China

4. School of Mechanical Engineering, Hefei University of Technology, Hefei 230009, China

Abstract

A comparative experimental and numerical study of the impact behaviour of carbon-fiber-reinforced thermoplastic (TP) and thermoset (TS) composites has been carried out. On the one hand, low velocity impact (LVI) tests were performed on TP and TS composites with different lay-up sequences at different energy levels, and the damage modes and microscopic damage mechanisms after impact were investigated using macroscale inspection, C-scan inspection, and X-ray-computed tomography. The comparative results show that the initial damage valve force under LVI depends not only on the material, but also on the layup sequence. The initial valve force of the P2 soft layer with lower stiffness is about 11% lower than that of the P1 quasi-isotropic layer under the same material, while the initial valve force of thermoplastic composites is about 28% lower than that of thermoset composites under the same stacking order. Under the same stacking order and impact energy level, the damage area and depth of TP composites are smaller than those of TS composites; while under the same material and impact energy level, the indentation depth of P2 plies is greater than that of P1 plies, and the damage area of P2 plies is smaller than that of P1 plies, but the change of thermoplastic composites is not as obvious as that of thermoset composites. This indicates that TP composites have a higher initial damage threshold energy and impact resistance at the same lay-up order, while increasing the lay-up ratio of the same material by 45° improves the impact resistance of the structure. In addition, a damage model based on continuum damage mechanics (CDM) was developed to predict different damage modes of thermoplastic composites during low velocity impact, and the analytical results were compared with the experimental results. At an impact energy of 4.45 J/mm, the error of the initial damage valve force is 5.26% and the error of the maximum impact force is 4.36%. The simulated impact energy and impact velocity curves agree with the experimental results, indicating that the finite element model has good reliability.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3