Enhancing the Cooling Efficiency of Aluminum-Filled Epoxy Resin Rapid Tool by Changing Inner Surface Roughness of Cooling Channels

Author:

Kuo Chil-Chyuan1234ORCID,Chen Hong-Wei1,Lin Geng-Feng1,Huang Song-Hua5,Tseng Shih-Feng6ORCID

Affiliation:

1. Department of Mechanical Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan

2. Research Center for Intelligent Medical Devices, Ming Chi University of Technology, New Taipei City 24301, Taiwan

3. Department of Mechanical Engineering, Chang Gung University, Taoyuan City 33302, Taiwan

4. Center for Reliability Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan

5. Li-Yin Technology Co., Ltd., New Taipei City 24301, Taiwan

6. Department of Mechanical Engineering, National Taipei University of Technology, Taipei City 106344, Taiwan

Abstract

In low-pressure wax injection molding, cooling time refers to the period during which the molten plastic inside the mold solidifies and cools down to a temperature where it can be safely ejected without deformation. However, cooling efficiency for the mass production of injection-molded wax patterns is crucial. This work aims to investigate the impact of varying surface roughness on the inner walls of the cooling channel on the cooling efficiency of an aluminum-filled epoxy resin rapid tool. It was found that the cooling time for the injection-molded products can be determined by the surface roughness according to the proposed prediction equation. Employing fiber laser processing on high-speed steel rods allows for the creation of microstructures with different surface roughness levels. Results demonstrate a clear link between the surface roughness of cooling channel walls and cooling time for molded wax patterns. Employing an aluminum-filled epoxy resin rapid tool with a surface roughness of 4.9 µm for low-pressure wax injection molding can save time, with a cooling efficiency improvement of approximately 34%. Utilizing an aluminum-filled epoxy resin rapid tool with a surface roughness of 4.9 µm on the inner walls of the cooling channel can save the cooling time by up to approximately 60%. These findings underscore the significant role of cooling channel surface roughness in optimizing injection molding processes for enhanced efficiency.

Publisher

MDPI AG

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3