Highly Stretchable Thermoplastic Polyurethane Separators for Li-Ion Batteries Based on Non-Solvent-Induced Phase Separation Method

Author:

Kim Tae Hyung1,Kim MinSu1ORCID,Kim Eun Ji1,Ju Minu1,Kim Ji Soo2,Lee Seung Hee123

Affiliation:

1. Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea

2. Department of JBNU-KIST Industry-Academia Convergence Research, Jeonbuk National University, Jeonju 54896, Republic of Korea

3. Department of Polymer-Nano Science and Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea

Abstract

The growing interest in wearable and portable devices has stimulated the need for flexible and stretchable lithium-ion batteries (LiBs). A crucial component in these batteries is the separator, which provides a pathway for Li-ion transfer and prevents electrode contact. In a flexible and stretchable LiB, the separator must exhibit stretchability and elasticity akin to its existing counterparts. Here, we developed a non-modified thermoplastic polyurethane (TPU) separator using the non-solvent induced phase separation (NIPS) technique. We compared their performance with commercially available polypropylene (PP) separators. Our results demonstrate that TPU separators exhibit superior elasticity based on repeated stretch/release tests with excellent thermal stability and electrolyte wettability. Furthermore, our findings confirm that TPU separators, even after being repeatedly stretched and released, can function effectively without severe damage in a fabricated coin cell LiB with high oxidative stability, as evidenced by linear sweep voltammetry, like commercially available separators.

Funder

Ministry of Education

Technology Innovation Program

Ministry of Trade, Industry & Energy

Ministry of Science and ICT

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3