Porous Coordination Polymer MOF-808 as an Effective Catalyst to Enhance Sustainable Chemical Processes

Author:

Ferreira Catarina E. S.1,Santos-Vieira Isabel2ORCID,Gomes Carlos R.3,Balula Salete S.1ORCID,Cunha-Silva Luís1ORCID

Affiliation:

1. LAQV/REQUIMTE & Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal

2. CICECO—Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal

3. CIMAR/CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental & Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal

Abstract

The improvement of sustainable chemical processes plays a pivotal role in safe environmental and societal development, for example, by reducing the use of hazardous substances, preventing chemical waste, and improving the efficiency of chemical reactions to obtain added-value compounds. In this context, the porous coordination polymer MOF-808 (MOF, metal–organic framework) was prepared by a straightforward method in water, at room temperature, and was unequivocally characterized by powder X-ray diffraction, vibrational spectroscopy, thermogravimetric analysis, and scanning electron microscopy. MOF-808 material was applied for the first time as catalysts in ring-opening aminolysis reactions of epoxides. It demonstrated high activity and selectivity for reactions of styrene oxide and cyclohexene oxide with aniline, using a very low amount of an eco-sustainable solvent (0.5 mL of EtOH), at 70 °C. Moreover, MOF-808 demonstrated high stability in the catalytic reaction conditions applied, and a notable reuse capacity of up to 20 consecutive reaction cycles, without significant variation in its catalytic performance. In fact, this Zr-based porous coordination polymer prepared by environment-friendly conditions proved to be a novel efficient heterogeneous catalyst, promoting the ring-opening reaction of epoxides under more sustainable conditions, and using a very low amount of catalyst.

Funder

Fundação para a Cinência e a Tecnologia/Ministério da Ciência, Tecnologia e Ensino Superior (FCT/MCTES) by national funds

CICECO-Aveiro Institute of Materials

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3