Synergistic Modification of Polyformaldehyde by Biobased Calcium Magnesium Bi-Ionic Melamine Phytate with Intumescent Flame Retardant

Author:

Lu Shike12,Chen Xueting2,Zhang Bin2,Lu Zhehong3ORCID,Jiang Wei3ORCID,Fang Xiaomin12,Li Jiantong1,Liu Baoying1ORCID,Ding Tao12,Xu Yuanqing12

Affiliation:

1. Henan Engineering Research Center of Functional Materials and Catalytic Reaction, Henan University, Kaifeng 475001, China

2. College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475001, China

3. National Special Superfine Powder Engineering Research Center of China, Nanjing University of Science and Technology, Nanjing 210014, China

Abstract

Intumescent flame retardants (IFRs) are mainly composed of ammonium polyphosphate (APP), melamine (ME), and some macromolecular char-forming agents. The traditional IFR still has some defects in practical application, such as poor compatibility with the matrix and low flame-retardant efficiency. In order to explore the best balance between flame retardancy and mechanical properties of flame-retardant polyformaldehyde (POM) composite, a biobased calcium magnesium bi-ionic melamine phytate (DPM) synergist was prepared based on renewable biomass polyphosphate phytic acid (PA), and its synergistic system with IFRs was applied to an intumescent flame-retardant POM system. POM/IFR systems can only pass the V-1 grade of the vertical combustion test (UL-94) if they have a limited oxygen index (LOI) of only 48.5%. When part of an IFR was replaced by DPM, the flame retardancy of the composite was significantly improved, and the POM/IFR/4 wt%DPM system reached the V-0 grade of UL-94, and the LOI reached 59.1%. Compared with pure POM, the PkHRR and THR of the POM/IFR/4 wt%DPM system decreased by 61.5% and 51.2%, respectively. Compared with the POM/IFR system, the PkHRR and THR of the POM/IFR/4 wt%DPM system were decreased by 20.8% and 27.5%, respectively, and carbon residue was increased by 37.2%. The mechanical properties of the composite also showed a continuous upward trend with the increase in DPM introduction. It is shown that the introduction of DPM not only greatly reduces the heat release rate and heat release amount of the intumescent flame-retardant POM system, reducing the fire hazard, but it also effectively improves the compatibility between the filler and the matrix and improves the mechanical properties of the composite. It provides a new approach for developing a new single-component multifunctional flame retardant or synergist for intumescent flame-retardant POM systems.

Funder

National Natural Science Foundation of China

International Science and Technology Cooperation Project of Henan province, China

Key Project of the Education Department of Henan Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3