Flexible Polyolefin Elastomer/Paraffin Wax/Alumina/Graphene Nanoplatelets Phase Change Materials with Enhanced Thermal Conductivity and Mechanical Performance for Solar Conversion and Thermal Energy Storage Applications

Author:

Tian Jie1,Wang Chouxuan2,Wang Kaiyuan2,Xue Rong2,Liu Xinyue2,Yang Qi3

Affiliation:

1. School of Civil Engineering and Architecture, Shaanxi University of Technology, Hanzhong 723099, China

2. National and Local Engineering Laboratory for Slag Comprehensive Utilization and Environment Technology, School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong 723099, China

3. College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China

Abstract

In this study, electrically insulating polyolefin elastomer (POE)-based phase change materials (PCMs) comprising alumina (Al2O3) and graphene nanoplatelets (GNPs) are prepared using a conventional injection moulding technique, which exhibits promising applications for solar energy storage due to the reduced interfacial thermal resistance, excellent stability, and proficient photo-thermal conversion efficiency. A synergistic interplay between Al2O3 and GNPs is observed, which facilitates the establishment of thermally conductive pathways within the POE/paraffin wax (POE/PW) matrix. The in-plane thermal conductivity of POE/PW/GNPs 5 wt%/Al2O3 40 wt% composite reaches as high as 1.82 W m−1K−1, marking a remarkable increase of ≈269.5% when compared with that of its unfilled POE/PW counterpart. The composite exhibits exceptional heat dissipation capabilities, which is critical for thermal management applications in electronics. Moreover, POE/PW/GNPs/Al2O3 composites demonstrate outstanding electrical insulation, enhanced mechanical performance, and efficient solar energy conversion and transportation. Under 80 mW cm−2 NIR light irradiation, the temperature of the POE/PW/GNPs 5 wt%/Al2O3 40 wt% composite reaches approximately 65 °C, a notable 20 °C improvement when compared with the POE/PW blend. The pragmatic and uncomplicated preparation method, coupled with the stellar performance of the composites, opens a promising avenue and broader possibility for developing flexible PCMs for solar conversion and thermal storage applications.

Funder

Project of Basic Research Programme of Shaanxi Provincial Department of Education

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3