In Situ Study and Improvement of the Temperature Increase and Isothermal Retention Stages in the Polyacrylonitrile (PAN) Fiber Pre-Oxidation Process

Author:

Cui Ye12,Liu Lizhi12ORCID,Song Lixin1ORCID,Li Sanxi2,Wang Ying12,Shi Ying13,Wang Yuanxia1ORCID

Affiliation:

1. Polymer High Functional Film Engineering Research Center of Liaoning Province, Shenyang University of Chemical Technology, Shenyang 110142, China

2. School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China

3. Research and Development, Dongguan HAILI Chemical Material Co., Ltd., Dongguan 523808, China

Abstract

The pre-oxidation process of Polyacrylonitrile (PAN) fibers is a complex procedure involving multiple stages of temperature increase and isothermal temperature retention. However, the impact of the temperature increase stage on PAN fiber has often been overlooked. To address this, samples were collected before and after the temperature increase and isothermal retention stages, treating them as separate influencing factors. Therefore, the pre-oxidation process can be divided into four distinct stages: (1) A temperature increase stage before the cyclization reactions: the PAN fiber’s small-size crystals melt, and the crystal orientation changes under fixed tension, leading to shrinkage and increased orientation of the micropore. (2) An isothermal retention stage before the cyclization reactions: The crystal structure maintains well, resulting in minimal micropore evolution. The PAN fiber’s crystal orientation and micropore orientation increased under fixed tension. (3) A temperature increase stage after the cyclization reactions: The PAN fiber’s crystal melts again, reducing the average chord length and relative volume of the micropore. However, the PAN fiber can recrystallize under fixed tension. (4) An isothermal retention stage after the cyclization reactions: Significant crystal melting of the PAN fiber occurs, but the highly oriented crystals are maintained well. The average chord length and relative volume of the micropore increase. Recommendations for improving the pre-oxidation process are made according to these stages.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3