Nanocomposites of Conducting Polymers and 2D Materials for Flexible Supercapacitors

Author:

Zhu Haipeng1,Xu Ruiqi1,Wan Tao1,Yuan Wenxiong1,Shu Kewei2,Boonprakob Natkritta3,Zhao Chen1

Affiliation:

1. School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China

2. Xi’an Key Laboratory of Advanced Performance Materials and Polymers, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi’an 710021, China

3. Program of Chemistry, Faculty of Science and Technology, Uttaradit Rajabhat University, Uttaradit 53000, Thailand

Abstract

Flexible supercapacitors (FSCs) with high electrochemical and mechanical performance are inevitably necessary for the fabrication of integrated wearable systems. Conducting polymers with intrinsic conductivity and flexibility are ideal active materials for FSCs. However, they suffer from poor cycling stability due to huge volume variations during operation cycles. Two-dimensional (2D) materials play a critical role in FSCs, but restacking and aggregation limit their practical application. Nanocomposites of conducting polymers and 2D materials can mitigate the above-mentioned drawbacks. This review presents the recent progress of those nanocomposites for FSCs. It aims to provide insights into the assembling strategies of the macroscopic structures of those nanocomposites, such as 1D fibers, 2D films, and 3D aerogels/hydrogels, as well as the fabrication methods to convert these macroscopic structures to FSCs with different device configurations. The practical applications of FSCs based on those nanocomposites in integrated self-powered sensing systems and future perspectives are also discussed.

Funder

Department of Science and Technology of Guangdong Province

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3