Highly Sustainable Dyes Adsorption in Wastewater Using Textile Filters Fabricated by UV Irradiation

Author:

Ryu Sujin1ORCID,Park Young Ki12,Shim Jaeyun1,Lim Seungju1,Kim Minsuk1ORCID

Affiliation:

1. Advanced Textile R&D Department, Research Institute of Convergence Technology, Korea Institute of Industrial Technology (KITECH), 143 Hanggaulro, Ansan 15588, Republic of Korea

2. Department of Fiber System Engineering, Dankook University, Yongin 16890, Republic of Korea

Abstract

Vast amounts of dyeing wastewater released from the textile industry can not only cause water pollution but also have negative effects on the human body, such as skin irritation and respiratory diseases. Dye adsorption technology is necessary for the treatment of wastewater discharged from the dyeing industry and for environmental improvement. However, to remove dyeing wastewater, more energy and solvents are used to fabricate adsorbents, or excessive energy is used to filter dyeing wastewater out, resulting in more environmental pollution. Therefore, it is necessary to develop a method of filtering dyeing wastewater in a more environmentally friendly manner by minimizing the use of solvents and energy. In this study, we modified the surface of a textile substrate through UV irradiation to create a monomer capable of facilely bonding with dyes. Employing the UV photografting method, we were able to produce a dye adsorption filter in a more environmentally friendly manner, minimizing solvent usage and heat energy consumption required for absorbent synthesis. At a monomer concentration of 10%, the fabricated filter exhibited a dye removal efficiency of 97.34% after 24 h, all without the need for a pressure treatment or temperature increase. Moreover, it displayed an adsorption capacity of approximately 77.88 mg per 1 g of filter material.

Funder

Korea Institute of Industrial Technology

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3