Properties of Organosilicon Elastomers Modified with Multilayer Carbon Nanotubes and Metallic (Cu or Ni) Microparticles

Author:

Shchegolkov Alexander1ORCID,Shchegolkov Aleksei2,Zemtsova Natalia1,Vetcher Alexandre3ORCID,Stanishevskiy Yaroslav3ORCID

Affiliation:

1. Institute of Power Engineering, Instrumentation and Radioelectronics, Tambov State Technical University, 392000 Tambov, Russia

2. Center for Project Activities, Moscow Polytechnic University, Bolshaya Semenovskaya St., 38, 107023 Moscow, Russia

3. Institute of Biochemical Technology and Nanotechnology (IBTN), Peoples’ Friendship University, Russia n.a. P. Lumumba (RUDN), 6 Miklukho-Maklaya St., 117198 Moscow, Russia

Abstract

The structural and electro-thermophysical characteristics of organosilicon elastomers modified with multilayer carbon nanotubes (MWCNTs) synthesized on Co-Mo/Al2O3-MgO and metallic (Cu or Ni) microparticles have been studied. The structures were analyzed with scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, and energy-dispersive X-ray spectroscopy (EDX). The main focus of this study was the influence of metallic dispersed fillers on the resistance of a modified elastomer with Cu and Ni to the degradation of electrophysical parameters under the action of applied electrical voltage. The distribution of the temperature field on the surface of a modified polymer composite with metallic micro-dimensional structures has been recorded. The collected data demonstrate the possibility of controlling the degradation caused by electrical voltage. It has been found that repeated on/off turns of the elastomer with an MWCNTs on 50 and 100 cycles leads to a deterioration in the properties of the conductive elastomer from the available power of 1.1 kW/m2 (−40 °C) and, as a consequence, a decrease in the power to 0.3 kW/m2 (−40 °C) after 100 on/off cycles. At the same time, the Ni additive allows increasing the power by 1.4 kW/m2 (−40 °C) and reducing the intensity of the degradation of the conductive structures (after 100 on/off cycles up to 1.2 kW/m2 (−40 °C). When Ni is replaced by Cu, the power of the modified composite in the heating mode increases to 1.6 kW/m2 (−40 °C) and, at the same time, the degradation of the conductive structures in the composite decreases in the mode of cyclic offensives (50 and 100 cycles) (1.5 kW/m2 (−40 °C)). It was found that the best result in terms of heat removal is typical for an elastomer sample with an MWCNTs and Cu (temperature reaches 93.9 °C), which indicates an intensification of the heat removal from the most overheated places of the composite structure. At the same time, the maximum temperature for the Ni additives reaches 86.7 °C. A sample without the addition of a micro-sized metal is characterized by the local unevenness of the temperature field distribution, which causes undesirable internal overheating and destruction of the current-conducting structures based on the MWCNTs. The maximum temperature at the same time reaches a value of 49.8 °C. The conducted studies of the distribution of the micro-sizes of Ni and Cu show that Cu, due to its larger particles, improves internal heat exchange and intensifies heat release to the surface of the heater sample, which improves the temperature regime of the MWCNTs and, accordingly, increases resistance to electrophysical degradation.

Funder

Moscow Polytechnic University within the framework of the grant named after Pyotr Kapitsa

RUDN University Strategic Academic Leadership Program (recipient A.V.) research within the framework of scientific project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3