Enhancing Devulcanizing Degree and Efficiency of Reclaimed Rubber by Using Alcoholic Amines as the Devulcanizing Agent in Low-Temperature Mechano–Chemical Process

Author:

Guo Lei12,Bai Lichen1,Zhao Jinyang1,Liu Kexin1,Jian Xingao1,Chai Hailin1,Liu Fumin1ORCID,Guo Shouyun1,Liu Gongxu1,Liu Haichao3

Affiliation:

1. College of Electromechanical Engineering, Qingdao University of Science & Technology, Qingdao 266061, China

2. Sino-Thai International Rubber College, Qingdao University of Science & Technology, Qingdao 266061, China

3. National Engineering Research Center of Advanced Tire Equipment and Key Materials, Qingdao University of Science & Technology, Qingdao 266061, China

Abstract

Low-temperature mechanical chemical devulcanization is a process that can produce reclaimed rubber with exceptional mechanical properties. However, the inadequacy and low efficiency of the devulcanization have significantly restricted its application. To address the issues, alcoholic amines, including hydroxyethyl ethylenediamine (AEEA), ethanolamine (ETA), and diethanol amine (DEA), are utilized as devulcanizing agents to promote the devulcanization process. Careful characterizations are conducted to reveal the devulcanizing mechanism and to depict the performances of reclaimed rubbers. Results show that the amine groups in the devulcanizing agents can react with sulfur after the crosslink bonds are broken by mechanical shear force, thus blocking the activity of sulfur and introducing hydroxyl groups into the rubber chains. The incorporation of alcoholic amines can enhance the devulcanizing degree and devulcanizing efficiency, reduce the Mooney viscosity, and improve the mechanical and anti-aging performance. When using DEA as the devulcanizing agent, the sol content of reclaimed rubber increases from 13.1% to 22.4%, the devulcanization ratio increases from 82.1% to 89.0%, the Mooney viscosity decreases from 135.5 to 83.6, the tensile strength improves from 14.7 MPa to 16.3 MPa, the retention rate of tensile strength raises from 55.2% to 82.6% after aging for 72 h, while the devulcanization time is shortened from 21 min to 9.5 min, compared with that without using alcoholic amines. Therefore, alcoholic amines exhibit remarkable advantages in the devulcanization of waste rubber, thus indicating a promising direction for the advancement of research in the area of waste rubber reclamation.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province, China

Postdoctoral Research Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3