Viability Study of Serra da Estrela Dog Wool to Produce Green Composites

Author:

Gomes Alexandra Soledade1,Fiadeiro Paulo Torrão1ORCID,Vieira André Costa2ORCID,Vieira Joana Costa1ORCID

Affiliation:

1. Fiber Materials and Environmental Technologies Research Unit (FibEnTech-UBI), Universidade da Beira Interior, Rua Marquês D’Ávila e Bolama, 6201-001 Covilhã, Portugal

2. Center for Mechanical and Aerospace Science and Technologies (C-MAST-UBI), Universidade da Beira Interior, Rua Marquês D’Ávila e Bolama, 6201-001 Covilhã, Portugal

Abstract

The environmental emergency has alerted consumers and industries to choose products derived from renewable sources over petroleum derivatives. Natural fibers of plant origin for reinforcing composite materials dominate the field of research aiming to replace synthetic fibers. The field of application of green dog wool composite materials needs to be reinforced and proven, as the industry is looking for more sustainable solutions and on the other hand this type of raw material (pet grooming waste) tends to grow. Hence, in the present work, the feasibility of applying natural fibers of dog origin (mainly composed by keratin) in green composites was studied. The green composites were developed using chemically treated dog wool of the breed Serra da Estrela (with NaOH and PVA) as reinforcement and a green epoxy resin as a matrix. The chemical treatments aimed to improve adhesion between fibers and matrix. The fibers’ composition was determined using X-ray Diffraction (X-RD). Their morphology was determined using a scanning electron microscope (SEM). The wettability of the fiber was also evaluated qualitatively by analyzing drops of resin placed on the fibers treated with the different treatments. The mechanical properties of the composites were also studied through mechanical tensile, flexural, and relaxation tests. Overall, the best results were obtained for the dog wool fibers without treatment. The tensile and flexural strength of this biocomposite were 11 MPa and 26.8 MPa, respectively, while the tensile and flexural elastic modulus were 555 MPa and 1100 MPa, respectively. It was also possible to verify that the PVA treatment caused degradation of the fiber, resulting in a decrease in mechanical tensile strength of approximately 42.7%, 59.7% in flexural strength and approximately 59% of the stress after 120 min of relaxation when compared to fiber made from untreated dog wool. On the other hand, the NaOH treatment worked as a fiber wash process, removing waxes and fats naturally present on the fiber surface.

Funder

Research Unit of Fiber Materials and Environmental Technologies

Fundação para a Ciência e a Tecnologia, IP/MCTES through national funds

Center for Mechanical and Aerospace Science and Technologies

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3