Polymeric Binder Design for Sustainable Lithium-Ion Battery Chemistry

Author:

Yoon Juhee1,Lee Jeonghun2,Kim Hyemin1,Kim Jihyeon1,Jin Hyoung-Joon13ORCID

Affiliation:

1. Program in Environmental and Polymer Engineering, Inha University, Incheon 22212, Republic of Korea

2. KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea

3. Department of Polymer Science and Engineering, Inha University, Incheon 22212, Republic of Korea

Abstract

The design of binders plays a pivotal role in achieving enduring high power in lithium-ion batteries (LIBs) and extending their overall lifespan. This review underscores the indispensable characteristics that a binder must possess when utilized in LIBs, considering factors such as electrochemical, thermal, and dispersion stability, compatibility with electrolytes, solubility in solvents, mechanical properties, and conductivity. In the case of anode materials, binders with robust mechanical properties and elasticity are imperative to uphold electrode integrity, particularly in materials subjected to substantial volume changes. For cathode materials, the selection of a binder hinges on the crystal structure of the cathode material. Other vital considerations in binder design encompass cost effectiveness, adhesion, processability, and environmental friendliness. Incorporating low-cost, eco-friendly, and biodegradable polymers can significantly contribute to sustainable battery development. This review serves as an invaluable resource for comprehending the prerequisites of binder design in high-performance LIBs and offers insights into binder selection for diverse electrode materials. The findings and principles articulated in this review can be extrapolated to other advanced battery systems, charting a course for developing next-generation batteries characterized by enhanced performance and sustainability.

Funder

Inha University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3