Applying the Taguchi Method to Improve Key Parameters of Extrusion Vacuum-Forming Quality

Author:

Chen Dyi-Cheng1,Chen Der-Fa1,Huang Shih-Ming2

Affiliation:

1. Department of Industrial Education and Technology, National Changhua University of Education, No. 1, Jin-De Road, Changhua City 500, Taiwan

2. Department of Mechanical Engineering, Wu Feng University, No. 117, Section 2, Jianguo Road, Minxiong 621303, Taiwan

Abstract

This research investigates the control of thickness and weight in plastic extrusion vacuum-thermoforming products to identify optimal key parameters for cost reduction and energy savings. The initial step involves identifying crucial influencing factors. In this step, the Delphi technique was employed through a questionnaire administered to a panel of expert scholars to ensure minimal error and maximal reliability in determining key influencing factors. Consensus was sought to establish appropriateness and consistency. Subsequently, the Taguchi method was applied for quality design and planning of the extrusion vacuum-forming process. The experimental design parameters were selected using an L18 (21 × 37) orthogonal array, and the desired quality characteristics were determined. Comparative analysis of quantitative production data from two consecutive experiments was conducted, and based on F-values and contribution analysis, the combination of control factors maximizing the Signal-to-Noise (S/N) ratio was identified. The objective is to seek optimal parameters for improving the quality of the plastic polypropylene (PP cup lid) manufacturing process, reducing process variability, and identifying the most robust production conditions. Through multiple actual production prediction experiments, it was determined that five control factors, “polypropylene new material ratio,” “T-die lips adjustment thickness”, “mirror wheel temperature stability”, “molding vacuum pressure time”, and “forming mold area design”, contribute to the maximization of the S/N ratio, i.e., minimizing variability. Statistical validation confirms a significant improvement in product quality and weight control. Noteworthily, the quality control model and experimental design parameters established in this study are also applicable to other plastic products and bio-based materials, such as PET, HIPS, and biodegradable PLA lids with added calcium carbonate. The results of the experimental production demonstrate its ability to consistently control product weight within the range of 3.4 ± 0.1 g, approaching the specified tolerance limits. This capability results in approximately 2.6% cost savings in product weight, contributing significantly to achieving a company’s KPI goals for environmental conservation, energy efficiency, and operational cost reduction. Therefore, the findings of this study represent a substantial and tangible contribution.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3