Electrospun MoS2-CNTs-PVA/PVA Hybrid Separator for High-Performance Li/FeS2 Batteries

Author:

Wu Sheng1,Liu Qian1,Zhang Wei1,Wu Ruizhe1ORCID,Tang Hongping1,Ma Yulin1,Xu Wenqiang1,Jiang Shufang1

Affiliation:

1. Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China

Abstract

As a promising candidate for high-energy-density rechargeable lithium metal batteries, Li/FeS2 batteries still suffer from the large volume change and severe shuttle effect of lithium polysulfides during cycling. To improve the electrochemical performance, great efforts have been made to modify FeS2 cathodes by constructing various nanocomposites. However, energy density is sacrificed, and these materials are not applicable at a large scale. Herein, we report that the electrochemical performance of commercial FeS2 can be greatly enhanced with the application of a double-layer MoS2-CNTs-PVA (MCP)/PVA separator fabricated by electrospinning. The assembled Li/FeS2 batteries can still deliver a high discharge capacity of 400 mAh/g after 200 cycles at a current density of 0.5 C. The improved cycling stability can be attributed to the strong affinity towards lithium polysulfides (LiPSs) of the hydroxyl-rich PVA matrix and the unique double-layer structure, in which the bottom layer acts as an electrical insulation layer and the top layer coupled with MoS2/CNTs provides catalytic sites for LiPS conversion.

Funder

Young Scientist Fund of Hubei University

Department of Science and Technology of Hubei Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3