Artificial Neural Network Approach for Assessing Mechanical Properties and Impact Performance of Natural-Fiber Composites Exposed to UV Radiation

Author:

Nasri Khaled1ORCID,Toubal Lotfi1ORCID

Affiliation:

1. Mechanical Engineering Department, The Innovation Institute in Eco Materials, Eco Products and Eco Energy (I2E3), Université du Quebec à Trois-Rivières (UQTR), C.P. 500, Trois-Rivières, QC G9A 5H7, Canada

Abstract

Amidst escalating environmental concerns, short natural-fiber thermoplastic (SNFT) biocomposites have emerged as sustainable materials for the eco-friendly production of mechanical components. However, their limited durability has prompted research into the experimental evaluation of the deterioration of the mechanical characteristics of SNFT biocomposites, particularly under the influence of ultraviolet rays. However, conducting tests to evaluate the mechanical properties can be time-consuming and expensive. In this study, an artificial neural network (ANN) model was employed to predict the mechanical properties (tensile strength) and the impact performance (resistance and absorbed energy) of polypropylene reinforced with 30 wt.% short flax or wood pine fibers (referred to as PP30-F or PP30-P, respectively). Eight parameters were collected from experimental studies. The ANN input parameters comprised nondestructive test results, including mass, hardness, roughness, and natural frequencies, while the output parameters were the tensile strength, the maximum impact load, and absorbed energy. The model was developed using the ANN toolbox in MATLAB. The linear coefficient of correlation and mean squared error were selected as the metrics for evaluating the performance function and accuracy of the ANN model. They calculate the relationship and the average squared difference between the predicted and actual values. The data analysis conducted by the models demonstrated exceptional predictive capability, achieving an accuracy rate exceeding 96%, which was deemed satisfactory. For both the PP30-F and PP30-P biocomposites, the ANN predictions deviated from the experimental data by 3, 5, and 6% with regard to the impact load, absorbed energy, and tensile strength, respectively.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3