Analysis on Isotropic and Anisotropic Samples of Polypropylene/Polyethyleneterephthalate Blend/Graphene Nanoplatelets Nanocomposites: Effects of a Rubbery Compatibilizer

Author:

Titone Vincenzo1ORCID,Baiamonte Marilena1,Ceraulo Manuela1,Botta Luigi12ORCID,Mantia Francesco Paolo La12ORCID

Affiliation:

1. Department of Engineering, University of Palermo, V. le delle Scienze, 90128 Palermo, Italy

2. INSTM, Consortium on Materials Science and Technology, Via G. Giusti 9, 50125 Florence, Italy

Abstract

Over the past few years, polymer nanocomposites have garnered a significant amount of interest from both the scientific community and industry due to their remarkable versatility and wide range of potential uses in various fields, including automotive, electronics, medicine, textiles and environmental applications. In this regard, this study focuses on the influence of a compatibilizer rubber on a nanocomposite incorporating graphene nanoparticles (GNPs), with a polymer matrix based on a blend of polypropylene (PP) and polyethylene terephthalate (PET). This effect has been investigated on both isotropic samples and on anisotropic/spun fiber samples. The influence of the compatibilizer rubber on morphological, rheological and mechanical properties was analysed and discussed. Mechanical and morphological properties were evaluated on both isotropic samples obtained by compression moulding and melt-spun fibers. The addition of the rubbery compatibilizer increased the viscosity, improving interfacial adhesion, and the same effect was observed for the melt strength and breaking stretching ratios. Mechanical properties, including the elastic modulus, tensile strength and elongation at break, improved in both types of samples but more significantly in the fibers. These improvements were attributed to the orientation of the matrix, the formation of PET microfibrils, and the reduction in the size of graphene nanoparticles due to the action of the elongational flow. This reduction, facilitated by the elongation flow and the action of the compatibilizer, improved matrix–nanofiller adhesion due to the increased contact area between the two polymeric phases and between the filler and matrix. Finally, a transition from brittle to ductile behaviour was observed, particularly in the system with the compatibilizer, attributed to defect reduction and improved stress transmission.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3