The Design of a Sustainable Industrial Wastewater Treatment System and The Generation of Biohydrogen from E. crassipes

Author:

Sayago Uriel Fernando Carreño1ORCID

Affiliation:

1. Facultad de Ingenieria, Fundacion Universitaria los Libertadores, 111221 Bogotá, Colombia

Abstract

Water scarcity is a significant global issue caused by the prolonged disregard and unsustainable management of this essential resource by both public and private bodies. The dependence on fossil fuels further exacerbates society’s bleak environmental conditions. Therefore, it is crucial to explore alternative solutions to preserve our nation’s water resources properly and promote the production of biofuels. Research into the utilization of E. crassipes to remove heavy metals and generate biofuels is extensive. The combination of these two lines of inquiry presents an excellent opportunity to achieve sustainable development goals. This study aims to develop a sustainable wastewater treatment system and generate biohydrogen from dry, pulverized E. crassipes biomass. A treatment system was implemented to treat 1 L of industrial waste. The interconnected compartment system was built by utilizing recycled PET bottles to generate biohydrogen by reusing the feedstock for the treatment process. The production of biological hydrogen through dark fermentation, using biomass containing heavy metals as a biohydrogen source, was studied. Cr (VI) and Pb (II) levels had a low impact on hydrogen production. The uncontaminated biomass of E. crassipes displayed a significantly higher hydrogen yield (81.7 mL H2/g glucose). The presence of Cr (IV) in E. crassipes leads to a decrease in biohydrogen yield by 14%, and the presence of Pb (II) in E. crassipes leads to a decrease in biohydrogen yield of 26%. This work proposes a strategy that utilizes green technologies to recover and utilize contaminated water. Additionally, it enables the production of bioenergy with high efficiency, indirectly reducing greenhouse gases. This strategy aligns with international programs for the development of a circular economy.

Funder

Universidad los Libertadores

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3