A New Approach of Complexing Polymers Used for the Removal of Cu2+ Ions

Author:

Marin Nicoleta Mirela12ORCID

Affiliation:

1. National Research and Development Institute for Industrial Ecology ECOIND, Street Podu Dambovitei No. 57-73, District 6, 060652 Bucharest, Romania

2. Department of Oxide Materials Science and Engineering, National University of Science and Technology Politehnica Bucharest, 1–7 Gh. Polizu, 060042 Bucharest, Romania

Abstract

This study presents two modified polymers for Cu2+ ion removal from aqueous media. Shredded maize stalk (MC) and a strong-base anionic resin (SAX) were modified with indigo carmine (IC) in order to obtain two different complexing polymers, i.e., IC-MC and SAX-IC. Initially, the complex reaction between IC and Cu2+ in the solution was studied. Additionally, the complex formation Cu2+-IC in liquid solutions was evaluated at different pH ranges of 1.5, 4.0, 6.0, 8.0, and 10.0, respectively. For Cu2+ ions, adsorption onto the IC-MC and IC-SAX batch experiments were conducted. The contact time for evaluating the optimum adsorption for Cu2+ ions on the complexing materials was established at 1 h. Efficient Cu2+ ion adsorption on the IC-MC and SAX-IC at pH = 10 was achieved. The adsorption of Cu2+ ions depends on the quantity of IC retained on MC and SAX. At 2.63 mg IC/g MC(S4) and 22 mg IC/g SAX(SR2), a high amount of Cu2+ ion adsorption was reported. The highest adsorption capacity (Qe) of IC-MC was obtained at 0.73 mg/g, and for IC-SAX, it was attained at 10.8 mg/g. Reusability experiments were performed using the HCl (0.5 M) solution. High regeneration and reusability studies of IC-MC and IC-SAX were confirmed, suggesting that they can be used many times to remove Cu2+ ions from aqueous matrices. Therefore, the development of complexing materials could be suitable for Cu2+ ion removal from wastewater.

Funder

European Social Fund

Romanian Ministry of Research, Innovation and Digitalization

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3