Cross-Linked Polyacrylic-Based Hydrogel Polymer Electrolytes for Flexible Supercapacitors

Author:

Shi Lanxin1,Jiang Pengfei1,Zhang Pengxue1,Duan Nannan1,Liu Qi1,Qin Chuanli1

Affiliation:

1. School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China

Abstract

Hydrogel polymer electrolytes (GPEs), as an important component of flexible energy storage devices, have gradually received wide attention compared with traditional liquid electrolytes due to their advantages of good mechanical, bending, and safety properties. In this paper, two cross-linked GPEs of poly(acrylic acid-co-acrylamide) or poly(acrylic acid-co-N-methylolacrylamide) with NaNO3 aqueous solution (P(AA-co-AM)/NaNO3 or P(AA-co-HAM)/NaNO3) were successfully prepared using radical polymerization, respectively, using acrylic acid (AA) as the monomer, N-methylolacrylamide (HAM) or acrylamide (AM) as the comonomer, and N, N-methylenebisacrylamide (MBAA) as the cross-linking agent. We investigated the morphology, glass transition temperature (Tg), ionic conductivities, mechanical properties, and thermal stabilities of the two GPEs. By comparison, P(AA-co-HAM)/NaNO3 GPE exhibits a higher ionic conductivity of 2.00 × 10−2 S/cm, lower Tg of 152 °C, and appropriate mechanical properties, which are attributed to the hydrogen bonding between the -COOH and -OH, and moderate cross-linking. The flexible symmetrical supercapacitors were assembled with the two GPEs and two identical activated carbon electrodes, respectively. The results show that the flexible supercapacitor with P(AA-co-HAM)/NaNO3 GPE shows good electrochemical performance with a specific capacitance of 63.9 F g−1 at a current density of 0.2 A g−1 and a capacitance retention of 89.4% after 3000 charge–discharge cycles. Our results provide a simple and practical design strategy of GPEs for flexible supercapacitors with wide application prospects.

Funder

National Natural Science Foundation of China

Joint guidance project of Natural Science Foundation of Heilongjiang Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3