Surface Modification of Flax Fibers with TMCTS-Based PECVD for Improved Thermo-Mechanical Properties of PLA/Flax Fiber Composites

Author:

Moradkhani Ghane1234ORCID,Profili Jacopo34ORCID,Robert Mathieu123,Laroche Gaétan34ORCID,Elkoun Saïd123ORCID,Mighri Frej25

Affiliation:

1. Center for Innovation in Technological Eco-Design (CITE), University of Sherbrooke, Sherbrooke, QC J1K 2R1, Canada

2. Research Center for High Performance Polymer and Composite Systems, CREPEC, Montreal, QC H3A 0C3, Canada

3. Quebec Center for Functional Materials, QCAM, Montreal, QC H2V 0B3, Canada

4. Centre de Recherche du Centre Hospitalier Universitaire de Québec, Hôpital St.-François d’Assise, Quebec, QC G1L 3L5, Canada

5. Department of Chemical Engineering, Laval University, Quebec, QC G1V 0A6, Canada

Abstract

Significant progress has been made in recent years in the use of atmospheric pressure plasma techniques for surface modification. This research focused on the beneficial effects of these processes on natural by-products, specifically those involving natural fiber-based materials. The study explored the deposition of hydrophobic organosilicon-like thin films onto flax fibres through plasma-enhanced chemical vapour deposition (PECVD), using tetramethylcyclotetrasiloxane (TMCTS) as the precursor. After the successful deposition of hydrophobic organosilicon-like thin films onto the flax fibres, polylactic acid (PLA) composite materials were fabricated. This fabrication process sets the stage for an in-depth analysis of the modified materials. Subsequently, these flax fabrics were subjected to meticulous characterization through scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and contact angle measurements. The results demonstrated successful TMCTS deposition on the surface which led to a complete hydrophobization of the flax fibers. Mechanical tests of the PLA/flax fibre composites revealed a significant improvement in load transfer and interfacial compatibility following the surface modification of the flax fibres. This improvement was attributed to the enhanced adhesion between the modified fibres and the PLA matrix. The findings highlight the potential of TMCTS-based PECVD as a practical surface modification technique, effectively enhancing the mechanical properties of PLA/flax fibre composites. These developments open exciting possibilities for sustainable and high-performance composite materials in various industries.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3