Theoretical Analysis of Thermophysical Properties of 3D Carbon/Epoxy Braided Composites with Varying Temperature

Author:

Jiang Li-Li1,Li Zhen-Guo1,Wang Dong-Ye1,Zhai Jun-Jun23,Kong Xiang-Xia4

Affiliation:

1. College of Civil Engineering and Architecture, Xiamen City University, Xiamen 361008, China

2. College of Aeronautics and Astronautics, North China Institute of Aerospace Engineering, Langfang 065000, China

3. Hebei Key Laboratory of Trans-Media Aerial Underwater Vehicle, North China Institute of Aerospace Engineering, Langfang 065000, China

4. Department of Material Engineering, North China Institute of Aerospace Engineering, Langfang 065000, China

Abstract

A three-dimensional helix geometry unit cell is established to simulate the complex spatial configuration of 3D braided composites. Initially, different types of yarn factors, such as yarn path, cross-sectional shape, properties, and braid direction, are explained. Then, the multiphase finite element method is used to develop a new theoretical calculation procedure based on the unit cell for predicting the impacts of environmental temperature on the thermophysical properties of 3D four-direction carbon/epoxy braided composites. The changing rule and distribution characteristics of the thermophysical properties for 3D four-direction carbon/epoxy braided composites are obtained at temperatures ranging from room temperature to 200 °C. The influences of environmental temperature on the coefficients of thermal expansion (CTE) and the coefficients of thermal conduction (CTC) are evaluated, by which some important conclusions are drawn. A comparison is conducted between theoretical and experimental results, revealing that variations in temperature exert a notable influence on the thermophysical characteristics of 3D four-directional carbon/epoxy braided composites. The theoretical calculation procedure is an effective tool for the mechanical property analysis of composite materials with complex geometries.

Funder

Scientific Research Fund Project of Xiamen City University of China

Yunding vocational education master training project of Xiamen City University of China

Fujian traditional style building engineering research center of Xiamen City University of China

National Natural Science Foundation of China

Natural Science Foundation of Hebei Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3