Biodegradable Biocomposite of Starch Films Cross-Linked with Polyethylene Glycol Diglycidyl Ether and Reinforced by Microfibrillated Cellulose

Author:

González-Pérez María M.1ORCID,Lomelí-Ramírez María G.1,Robledo-Ortiz Jorge R.1ORCID,Silva-Guzmán José A.1,Manríquez-González Ricardo1ORCID

Affiliation:

1. Department of Wood, Cellulose and Paper, University Center for Exact Sciences and Engineering, University of Guadalajara, km 15.5 at the Guadalajara-Nogales Highway, Zapopan 45220, Mexico

Abstract

Biopolymers are biodegradable and renewable and can significantly reduce environmental impacts. For this reason, biocomposites based on a plasticized starch and cross-linker matrix and with a microfibrillated OCC cardboard cellulose reinforcement were developed. Biocomposites were prepared by suspension casting with varied amounts of microfibrillated cellulose: 0, 4, 8, and 12 wt%. Polyethylene glycol diglycidyl ether (PEGDE) was used as a cross-linking, water-soluble, and non-toxic agent. Microfibrillated cellulose (MFC) from OCC cardboard showed appropriate properties and potential for good performance as a reinforcement. In general, microfiber incorporation and matrix cross-linking increased crystallization, reduced water adsorption, and improved the physical and tensile properties of the plasticized starch. Biocomposites cross-linked with PEGDE and reinforced with 12 wt% MFC showed the best properties. The chemical and structural changes induced by the cross-linking of starch chains and MFC reinforcement were confirmed by FTIR, NMR, and XRD. Biodegradation higher than 80% was achieved for most biocomposites in 15 days of laboratory compost.

Publisher

MDPI AG

Reference63 articles.

1. The degradation of single-use plastics and commercially viable bioplastics in the environment: A review;Idris;Environ. Res.,2023

2. Sustainable polymers;Mohanty;Nat. Rev. Methods Primers,2022

3. Schutz, G.F., de Ávila, G.S., Varcelino, A.R.M., and Vieira, R.P. (2024). A review of starch-based biocomposites reinforced with plant fibers. Int. J. Biol. Macromol., 261.

4. Chemical and mechanical evaluation of bio-composites based on thermoplastic starch and wood particles prepared by thermal compression;BioResources,2014

5. Robust and flexible films from 100% starch cross-linked by biobased disaccharide derivative;Xu;ACS Sustain. Chem. Eng.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3