Affiliation:
1. College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
2. Institute of Materials, Yantai University, Yantai 264005, China
Abstract
A novel functional polycarbonate (PAGC), characterized by the presence of double bonds within its side chain, was successfully synthesized through a ternary copolymerization of propylene oxide (PO), allyl glycidyl ether (AGE), and carbon dioxide (CO2). Polyhedral oligomeric silsesquioxanes octamercaptopropyl (POSS-SH) was employed as a crosslinking agent, contributing to the formation of organic–inorganic hybrid materials. This incorporation was facilitated through thiol-ene click reactions, enabling effective interactions between the POSS molecules and the double bonds in the side chains of the polycarbonate. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) confirmed a homogeneous distribution of silicon (Si) and sulfur (S) in the polycarbonate matrix. The thiol-ene click reaction between POSS-SH and the polycarbonate led to a micro-crosslinked structure. This enhancement significantly increased the tensile strength of the polycarbonate to 42 MPa, a notable improvement over traditional poly (propylene carbonate) (PPC). Moreover, the cross-linked structure exhibited enhanced solvent resistance, expanding the potential applications of these polycarbonates in various plastic materials.
Funder
National Natural Science Foundation of China
Taishan Scholar Program
Central Government Special Funds Supporting the Development of Local Science and Technology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献